(1)f'(x)=lnx+1,x∈(0,+∞)
又∵当f'(x)=lnx+1=0,得x=
,如下表1 e
∴f(x)在(0,
)上单调递减,在( 1 e
,+∞)上单调递增,在x=1 e
处取得极小值,1 e
且极小值为f(
)=-1 e
.1 e
(2)由已知y=g(x)=-f(2-x)=(x-2)ln(2-x)(0<x<2),要证明f(x)≥g(x),
只须证明f(x)-g(x)≥0,
令h(x)=f(x)-g(x)=xlnx+(2-a)ln(2-x),则g′(x)=ln
,x 2?x
令g′(x)=0,得x=1,
当x∈(0,1)时,h'(x)<0,当x∈(1,2)时,h'(x)>0,
∴当x∈(0,2)时,h(x)≥h(1)=0,
∴f(x)≥g(x).