(2009?西城区二模)如图,正方形ABCD的边长为4,E为CD的中点,F为AD边上一点,且不与点D重合,AF=a,(1

2025-05-14 13:05:29
推荐回答(1个)
回答1:

解答:解:(1)如图,连接BE,
S四边形BCEF=S正方形ABCD-S△ABF-S△DEF=42-

1
2
×4×a-
1
2
×2×(4-a)=12-a,
∵F为AD边上一点,且不与点D重合,
∴0≤a<4,
∴当点F与点A重合时,a=0,S四边形BCEF存在最大值12.
S四边形BCEF不存在最小值.

(2)如图,延长BC,FE交于点P,
∵正方形ABCD,
∴AD∥BC.
∴△DEF∽△CEP.
∵E为CD的中点,
EF
EP
=
DE
CE
=1,PF=2EF.
∵∠BFE=∠FBC,
∴PB=PF.
∵AF=a,
∴PC=DF=4-a,PB=PF=8-a,
EF=
PF
2
=
8?a
2

∵Rt△DEF中,EF2=DE2+DF2
(
8?a
2
)
2
=22+(4-a)2整理,得3a2-16a+16=0,
解得,a1=
4
3
,a2=4;
∵F点不与D点重合,
∴a=4不成立,a=
4
3
,tan∠AFB=
AB
AF
=3.

(3)延长BC,FE交于点P,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△DEF∽△CEP.
∵CE=k?DE,
EF
EP
=
DE
CE
=
1
k
,PF=(k+1)EF.
∵∠BFE=∠FBC,
∴PB=PF,
∵AF=a,
∴PC=(4-a)k,PB=PF=4+(4-a)k.
EF=
PF
k+1
=
8?a
k+1

∵Rt△DEF中,EF2=DE2+DF2
∴(
8?a
k+1
2=(
4
k+1
2+(4-a)2整理,
12?a
k+1
×
4?a
k+1
=(4-a)2
(k+1)2=
12?a
4?a

解得a=
4
2k+1

∴tan∠AFB=
AB
AF
=2k+1(k为正数).