根据正弦定理:b/2R=sinB,c/2R=sinC∵sinB=4cosAsinC∴b/2R=4cosA•(c/2R)即:b=4cosA•c∴cosA=b/4c根据余弦定理:cosA=(b²+c²-a²)/2bc∴(b²+c²-a²)/2bc=b/4c4c•[b²-(a²-c²)]=b•2bc4c(b²-2b)=2b²c4b²c - 8bc - 2b²c=02b²c - 8bc=02bc(b-4)=0∵b≠0,c≠0∴b-4=0,则b=4
如图