连接OC,
∵O为正方形ABCD的中心,
∴∠DCO=∠BCO,
又∵CF与CE都为圆O的切线,
∴CO平分∠ECF,即∠FCO=∠ECO,
∴∠DCO-∠FCO=∠BCO-∠ECO,即∠DCF=∠BCE,
又∵△BCE沿着CE折叠至△FCE,
∴∠BCE=∠ECF,
∴∠BCE=∠ECF=∠DCF=
∠BCD=30°,1 3
在Rt△BCE中,设BE=x,则CE=2x,又BC=4,
根据勾股定理得:CE2=BC2+BE2,即4x2=x2+42,
解得:x=
,4
3
3
∴CE=2x=
.8
3
3
故答案为:
8
3
3
连接OC,
CE等于3/4根号3