一道高数题,求详解

2025-05-23 12:02:34
推荐回答(2个)
回答1:

F(x) = (f(x)-f(a))/(x-a)
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
there exits b 属于(a,+无穷)such that
f'(b) = [f(x)-f(a)]/(x-a)
f(x) -f(a) = f'(b)(x-a)
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
= [f'(x)-f'(b)]/(x-a)
there exit c 属于 (b, +无穷) such that
(f'(x) - f'(b)) /(x-b) = f''(c)
F'(x) = [f'(x)-f'(b)]/(x-a)
=[ [f'(x)-f'(b)]/(x-b) ] (x-b)/(x-a)
= f''(c)(x-b)/(x-a)
> 0 ( x>b>a)
F(x) is increasing

回答2:

由题意,f``(x)>0,则f`(x)在(a,+∞)递增,所以f`(x)>f`(a),所以f`(x)-f`(a)>0,因此函数f(x)-f(a)在
(a,,+∞)递增,所以f(x)-f(a)>f(a)-f(a)=0,
所以F`(x)=[f`(x)(x-a)+f(x)-f(a)]/(x-a)²>0,x∈(a,,+∞),故F(x)在a,,+∞)递增