a3=1+2da9=1+8da1,a3,a9成等比数列(1+2d)^2=1*(1+8d)4d^2+4d+1=8d+14d^2-4d=0d(d-1)=0公差不为零d=1an=nbn=2^n+nSn=2^(n+1)-1+n(n+1)/2
设公差为c 1+8c=(1+2c)^2c=1sn=2+2^2+2^3+....+2^n+1+2+3+...nsn=[2(1-2^n)/1-2]+(1+n)n/2=2^(n+1)-2+(1+n)n/2