已知f(x)=2x-1,g(x)=-2x,数列{a n } (n∈N * )的各项都是整数,其前n项和为S n ,若点(a 2n-1

2025-05-17 14:59:17
推荐回答(1个)
回答1:

(1)当n为偶数时,a n =
n
2

∵f(x)=2x-1,g(x)=-2x,点(a 2n-1 ,a 2n )在函数y=f(x)或y=g(x)的图象上,
∴a 2n =2a 2n-1 -1,或a 2n =-2a 2n-1
当a 2n =2a 2n-1 -1时,2a 2n-1 =a 2n +1=n+1,∴a 2n-1 =
n+1
2

∵数列{a n } (n∈N * )的各项都为整数,
∴n为奇数时,a 2n-1 =
n+1
2

令n=2k-1,k∈N * ,则a 4k-3 =
2k-1+1
2
=k,即a 1 ,a 5 ,a 9 ,…,成首项为1,公差为1的等差数列;
当a 2n =-2a 2n-1 时,a 2n-1 =-
n
2

所以n为偶数时,a 2n-1 =-
n
2

令n=2k′,k′∈N * ,则a 4k′-1 =-
2k′
2
=-k′,即a 3 ,a 7 ,a 11 ,…,成首项为-1,公差为-1的等差数列;
所以S 8 =a 1 +a 2 +a 3 +a 4 +a 5 +a 6 +a 7 +a 8
=(a 2 +a 4 +a 6 +a 8 )+(a 1 +a 5 )+(a 3 +a 7
=
1
2
(2+4+6+8)+(1+2)+(-1-2)
=10;
(2)由(1)知,n为偶数时,a n =
n
2
,且a 1 ,a 5 ,a 9 ,…,成首项为1,公差为1的等差数列,a 3 ,a 7 ,a 11 ,…,成首项为-1,公差为-1的等差数列,
所以S 4n =S +S =[(1+2+3+…+n)+(-1-2-3-…-n)]+(1+2+3+4+…+2n)=
2n(1+2n)
2
=2n 2 +n.
故答案为:(1)10;(2)2n 2 +n.