(1)当n为偶数时,a n =
∵f(x)=2x-1,g(x)=-2x,点(a 2n-1 ,a 2n )在函数y=f(x)或y=g(x)的图象上, ∴a 2n =2a 2n-1 -1,或a 2n =-2a 2n-1 , 当a 2n =2a 2n-1 -1时,2a 2n-1 =a 2n +1=n+1,∴a 2n-1 =
∵数列{a n } (n∈N * )的各项都为整数, ∴n为奇数时,a 2n-1 =
令n=2k-1,k∈N * ,则a 4k-3 =
当a 2n =-2a 2n-1 时,a 2n-1 =-
所以n为偶数时,a 2n-1 =-
令n=2k′,k′∈N * ,则a 4k′-1 =-
所以S 8 =a 1 +a 2 +a 3 +a 4 +a 5 +a 6 +a 7 +a 8 =(a 2 +a 4 +a 6 +a 8 )+(a 1 +a 5 )+(a 3 +a 7 ) =
=10; (2)由(1)知,n为偶数时,a n =
所以S 4n =S 奇 +S 偶 =[(1+2+3+…+n)+(-1-2-3-…-n)]+(1+2+3+4+…+2n)=
故答案为:(1)10;(2)2n 2 +n. |