如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=3分之8倍根号3,边AB的垂直平分线CD分别与AB、x轴、y轴交于

2025-05-24 07:07:03
推荐回答(2个)
回答1:

解(1)∵∠OAB=90°
又因为DC⊥AB,且平分AB
∴∠DCB=90°,AC=CB
∴OA平行于DC
∴GC为△BOA的中位线则GC=1/2OA
∵∠OBA=30°,CB=8根号3/3
∴OA=8根号3/3×1/2=4根号3/3
则GC=2根号3/3
∵GB=2CG
∴GB=4根号3/3
∴OG=4根号3/3
∴G(4根号3/3,0)
解(2)∵∠CGB=∠OGD=60°
又∵∠DOG=90°
∴∠ODG=30°
∴DG=2OG则DG=8根号3/3
在Rt△DOG中根据勾股定理的:
DO^=DG^-OG^
则DO=4
设直线CD的解析式为y=kx+b(k≠0)
∵当x=4根号3/3时,y=0.当x=0时,y=4.
∴解得b=4,k=-根号3
∴直线CD的解析式为y=-根号3x+4

回答2:

提供一下解题思路
你连接一下AG,利用垂直平分线性质,看看三角形OGA不是个等边三角形,三角形AGB不是个等腰三角形吗?