∫1⼀√x2+a2dx

∫1/√x2+a2dx
2025-05-18 17:41:15
推荐回答(1个)
回答1:

设 x=atanu,
则u=arctan(x/a)
∫[1/√(x²+a²)]dx
=∫[1/√(a²tan²u+a²)]d(atanu)
=∫cosu·sec²udu
=∫secudu
=ln|secu+tanu| +C
=ln|√(x²+a²)/a +x/a| +C
=ln|[√(x²+a²)+x]/a| +C