x,y,z为正数x+y>=1/2x+z>=1*2(x+y)(x+z)>=1/4y>=1 z>=1yz/(x+y)(x+z)>=1/4同理可得xz/(y+z)(y+x)》=1/4xy/(z+x)(z+y》=1/4所以yz/(x+y)(x+z) +xz/(y+z)(y+x) +xy/(z+x)(z+y)≥3/4
x,y,z为正数 可以令x y z 为1 ,yz/(x+y)(x+z) +xz/(y+z)(y+x) +xy/(z+x)(z+y) =3/4 在合并