已知等差数列{a n }的前n项和为S n ,且S 4 =16,a 4 =7.(1)求数列{a n }的通项公式;(2)求 1

2025-05-13 00:22:27
推荐回答(1个)
回答1:

(1)由题意得
因为{a n }是等差数列
所以当n+m=k+l时则a n +a m =a k +a l
所以S 4 =a 1 +a 2 +a 3 +a 4
=2(a 1 +a 4 )=16
由∵a 4 =7
∴a 1 =1
∴d=2
所以数列{a n }的通项公式是a n =2n-1.
(2)由(1)得a n =2n-1
1
a n a n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

所以
1
a 1 a 2
+
1
a 2 a 3
+…+
1
a 2007 a 2008

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
4011
-
1
4013
+
1
4013
-
1
4015
)

=
1
2
(1-
1
4015
)

=
2007
4015

1
a 1 a 2
+
1
a 2 a 3
+…+
1
a 2007 a 2008
的值是
2007
4015