(1)证明:连接BO,∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:连接CE,∵AC是直径,∴∠ABC=∠CEA=90°,又∵∠AFB=∠CFE,∴△AFB∽△CFE,∴ AF BF = CF EF ,又CF=9,cos∠BFA= 2 3 ,∴EF= 2 3 ×9=6.