如何进行KMO检验?

2025-05-15 17:42:16
推荐回答(2个)
回答1:

SPSS提供判断原始变量是否适合作因子分析,所以进行KMO检验。

一个大的KMO测度值支持进行因子分析。一般而言,KMO测度>0.5意味着因子分析可以进行,而在0.7以上则是令人满意的值。

KMO在0.9以上,非常合适做因子分析;在0.8-0.9之间,很适合;在0.7-0.8之间,适合;在0.6-0.7之间,尚可;在0.5-0.6之间,表示很差;在0.5以下应该放弃。

由于因子分析是寻求内在结构,要求样本量比较充足,样本量与变量数的比例应在5:1以上;总样本量不得少于100,而且原则上越多越好;个变量间必须有相关性。

扩展资料

Bartlett's球型检验用于检验相关阵是否是单位阵,即各变量是否独立。它是以变量的相关系数矩阵为出发点,零假设:相关系数矩阵是一个单位阵。

如果巴特利球形检验的统计计量数值较大,且对应的相伴概率值小于用户给定的显著性水平,则应该拒绝零假设;反之,则不能拒绝零假设,认为相关系数矩阵可能是一个单位阵,不适合做因子分析。

若假设不能被否定,则说明这些变量间可能各自独立提供一些信息,缺少公因子。

举例:巴特利球形检验统计量为131.051,相应的概率Sig为0.000,因此可认为相关系数矩阵与单位阵有显著差异。同时,KMO值为0.762,根据Kaiser给出的KMO度量标准可知原有变量适合作因子分析。

参考资料来源:百度百科-KMO检验

回答2:

1、KMO统计量:是通过比较各变量间简单相关系数和偏相关系数的大小判断变量间的相关性,相关性强时,偏相关系数远小于简单相关系数,KMO值接近1。一般情况下,KMO>0.9非常适合因子分析;0.8<KMO<0.9适合;0.7以上尚可,0.6时效果很差,0.5以下不适宜作因子分析。
2、Bartlett’s球型检验(巴特利球形检验(Barlett Test of Sphericity)。):用于检验相关阵是否是单位阵,即各变量是否独立。它是以变量的相关系数矩阵为出发点,零假设:相关系数矩阵是一个单位阵。如果巴特利球形检验的统计计量数值较大,且对应的相伴概率值小于用户给定的显著性水平,则应该拒绝零假设;反之,则不能拒绝零假设,认为相关系数矩阵可能是一个单位阵,不适合做因子分析。若假设不能被否定,则说明这些变量间可能各自独立提供一些信息,缺少公因子。
3、举例:巴特利球形检验统计量为131.051,相应的概率Sig为0.000,因此可认为相关系数矩阵与单位阵有显著差异。同时,KMO值为0.762,根据Kaiser给出的KMO度量标准可知原有变量适合作因子分析。