∫f'(2x)dx=1/2∫f'(2x)d2x=1/2f(2x)+c因为f(x)的一个原函数为(lnx)^2,所以f(x)=[(lnx)^2]'=(2lnx)/x即f(2x)=(ln2x)/x所以∫f'(2x)dx=(ln2x)/2x+c