f'(x)=2ax+b
若对任意实数x,有f(x)≥0则a>0且△=b²-4ac≤0
你可以画一个图像看看,这样简单明了!
f(1)=a+b+c
f'(0)=b
f(1)/f'(0)=(a+b+c)/b
∵b²-4ac≤0
∴a≥b²/(4c)
∴f(1)/f'(0)=(a+b+c)/b≥b/(4c)+c/b+1≥2√[(b/4c)*(c/b)]+1=1+1=2
∴当且仅当b/4c=c/b,b²=4ac时,f(1)/f'(0)有最小值且为2
f'(x)=2ax+b
若对任意实数x,有f(x)≥0则a>0且△=b²-4ac≤0
你可以画一个图像看看,这样简单明了!
f(1)=a+b+c
f'(0)=b
f(1)/f'(0)=(a+b+c)/b
已知二次函数f(x)=ax^2+bx+c的导数为f'(x).f'(x)>0,对任意实数x有f(x)≥0,则f(1)/f'(0)的最小值
解:由题意对任意实数x有f(x)≥0得
判别式Δ=b^2-4ac≤0,a≥(b^2)/4c
f(1)=a+b+c,f'(0)=b
∴f(1)/f(0)=(a+b+c)/b
=a/b+c/b+1(∵a≥(b^2)/4c)
≥b/4c+c/b+1
≥2√(b/4c*c/b)+1=2
当且仅当 b/4c=c/b ,b^2=4ac时, f(1)/f'(0)的最小值为2
因为所以,科学道理,要想知道,请拿钞票,不多不少,一亿正好,
因为函数值始终大于等于0.所以图象在X轴上方,因此判别式大于等于0