二维随机变量(x,y)的概率密度函数已知,求p{x+y<=1}

f(x,y)=4.8y(2-x) 0&lt;=1,0&lt;=y&lt;=xf(x,y)=0 其他 解答能详细点吗??多谢!!!
2025-05-14 05:12:50
推荐回答(3个)
回答1:

化累次积分,先对y积分。

左边y积分线 0到x,x积分线0到1/2。
右边y积分线0到1-x,x积分线1/2到1。

扩展资料:

连续型随机变量的概率密度函数有如下性质:

如果概率密度函数fX(x)在一点x上连续,那么累积分布函数可导。

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。

更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。

回答2:

对f(x,y)在区域x+y<=1积分即可,有效区域是个等腰直角三角形三顶点(0 0)(1 0)(1/2 1/2)按x=1/2分两块。
然后化累次积分嘛,先对y积分

左边半块,y积分线 0到x,x积分线0到1/2
右边半块,y积分线0到1-x,x积分线1/2到1

回答3:

见图片。