求代数式⼀x-1⼀+⼀x-2⼀+⼀x-3⼀+……+⼀x-2003⼀的最小值

2025-05-13 19:54:54
推荐回答(2个)
回答1:

|x-1|+|x-2|+|x-3|+……+|x-2003|
(1+2003)/2=2002
当x=1002时,有最小值:
最小值 = |1002-1|+|1002-2|+|1002-3|+……+|1002-2003|
= 1001+1000+999+......+3+2+1+0+1+2+3+....999+1000+1001
= 2 {1+2+3+....1001}
= 2 { (1+1001)*1001/2 }
= 1002*1001
= 1003002

回答2:

|x-1|+|x-2|+|x-3|+……+|x-2003|的最小值是
(2003-1)+(2002-2)+(2001-4)+……+(1003-1001)+0
=2002+2000+1998+……+2
=(2002+2)*1001/2
=1003002