如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C做匀速运

2025-05-24 05:20:34
推荐回答(1个)
回答1:

解:(1)在直角梯形ABCD中,
∵QN⊥AD,∠ABC=90°,
∴四边形ABNQ是矩形,
∵QD=t,AD=3,
∴BN=AQ=3-t,
∴NC=BC-BN=4-(3-t)=t+1,
∵AB=3,BC=4,∠ABC=90°,
∴AC=5,
∵AB∥QN,
∴MN∥AB,


(2)当QD=CP时,四边形PCDQ构成平行四边形,
∴当t=4-t,即t=2时,四边形PCDQ构成平行四边形;
(3)∵MN∥AB,
∴△MNC∽△ABC,
要使射线QN将△ABC的面积平分,则△MNC与△ABC的面积比为1:2,即相似比为





∵△ABC的周长的一半
∴不存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分;
(4)分3种情况: ①如图(1),
当PM=MC时,△PMC为等腰三角形,
则PN=NC,即3-t-t=t+1,

时,△PMC为等腰三角形;
②如图(2),当CM=PC时,△PMC为等腰三角形,
,解得
时,△PMC为等腰三角形;
③如图(3),当PM=PC时,△PMC为等腰三角形,
∵PC=4-t,NC=t+1,
∴PN=2t-3,
又∵

由勾股定理可得
解得 ,t 2 =-1(舍去),
即当 时,△PMC为等腰三角形,
综上所述,当t= 时,△PMC为等腰三角形。