已知函数f(x)=xx+1,数列{an}满足a1=1,an+1=f(an).(1)求证:数列{1an}是等差数列;(2)设bn=ana

2025-05-13 06:42:46
推荐回答(1个)
回答1:

解;(1)∵an+1=f(an)=

an
an+1

1
an+1
=1+
1
an

1
an+1
-
1
an
=1,又
1
a1
=1
∴数列{
1
an
}
是以1为首项,以1为公差的等差数列.
(2)∵(1)得
1
an
=1+(n-1)×1=n,∴an=
1
n

∵bn=anan+1,∴bn=
1
n×(n+1)
=
1
n
-
1
n+1

Sn=1-
1
2
+
1
2
-
1
3
+
1
3
?
1
4
+…+
1
n
?
1
n+1
=1-
1
n+1
<1
又知{Sn}为递增数列,∴Sn≥S1=b1=
1
1×2
1
2

1
2
Sn<1