设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,{bn-2}是等比数列.(1)

2025-05-14 11:22:28
推荐回答(1个)
回答1:

(1)依题意得:(a3-a2)-(a2-a1)=-1-(-2)=1.
所以an+1-an=(a2-a1)+(n-1)?1=n-3,
故当n≥2时,有an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-4)+(n-5)+…+(-1)+(-2)+6=

n2-7n+18
2

又因为n=1时,a1=6也适合上式,
所以an=
n2-7n+18
2
(n∈N*)

又∵
b2-2
b1-2
=
2
4
=
1
2
,b1-2=4,∴bn-2=4?(
1
2
)n-1=(
1
2
)n-3

bn=(
1
2
)n-3+2(n∈N*)

(2)Sn=b1+2b2+3b3+…+nbn
=[(
1
2
-2+2]+2[(
1
2
-1+2]+3[(
1
2
0+2]+…+n[(
1
2
n-3+2]
=[(
1
2
-2+2(
1
2
-1+3[(
1
2
0+…+n(
1
2
n-3]+2(1+2+3+…+n)

=[(
1
2
-2+2(
1
2
-1+3[(
1
2
0+…+n(
1
2
n-3]+n(1+n)
 令S=(
1
2
-2+2(
1
2
-1+3[(
1
2
0+…+n(
1
2
n-3