(1)依题意得:(a3-a2)-(a2-a1)=-1-(-2)=1.
所以an+1-an=(a2-a1)+(n-1)?1=n-3,
故当n≥2时,有an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-4)+(n-5)+…+(-1)+(-2)+6=
,
n2-7n+18 2
又因为n=1时,a1=6也适合上式,
所以an=
(n∈N*)
n2-7n+18 2
又∵
=
b2-2
b1-2
=2 4
,b1-2=4,∴bn-2=4?(1 2
)n-1=(1 2
)n-3,1 2
故bn=(
)n-3+2(n∈N*)1 2
(2)Sn=b1+2b2+3b3+…+nbn
=[(
)-2+2]+2[(1 2
)-1+2]+3[(1 2
)0+2]+…+n[(1 2
)n-3+2]1 2
=[(
)-2+2(1 2
)-1+3[(1 2
)0+…+n(1 2
)n-3]+2(1+2+3+…+n)1 2
=[(
)-2+2(1 2
)-1+3[(1 2
)0+…+n(1 2
)n-3]+n(1+n)1 2
令S=(
)-2+2(1 2
)-1+3[(1 2
)0+…+n(1 2
)n-31 2
则