解一道数学题:已知数列{a}的前n项和s=(n+1)b,其中{b}是首项为1,公差为2的等差数列 (1)求数列{a}的通向

(2)若c=1/a(2b+5),求数列{c}的前n项和T
2025-05-20 05:20:06
推荐回答(3个)
回答1:

(1)
b1=1 d=2
bn=1+2(n-1)=2n-1
Sn=(n-1)(2n-1)=2n^2+n-1
n=1,a1=S1=2
n>1,an=Sn-Sn-1=2n^2+n-1-2(n-1)^2-n+1+1=4n-1
将n=1代入an=4n-1得a1=3
所以an=2 (n=1)
an=4n-1 (n>1)
(2)
n=1,Cn=C1=1/a1(2b1+5)=1/14
n>1,Cn=1/an(2bn+5)=1/(4n-1)(4n+3)
将n=1代入Cn=1/(4n-1)(4n+3)=1/21
所以Cn=1/14 (n=1)
Cn=1/(4n-1)(4n+3) (n>1)
n=1,Tn=T1=C1=1/14
n>1,Tn=C1+C2+......+Cn=1/14+1/4 (1/7-1/11)+1/4 (1/11-1/15)+......+1/4 [1/(4n-1)-(4n+3)]
=1/14+1/4 [1/7-1/11+1/11-1/15+1/15-1/19+......+1/(4n-1)-1/(4n+3)]
=1/14+1/4 [1/7-1/(4n+3)]
=3/28-1/(16n+12)
所以Tn=1/14 (n=1)
Tn=3/28-1/(16n+12) (n>1)

回答2:

1.
bn=1+2(n-1)=2n-1
sn=(n+1)bn
=(n+1)(2n-1)
an=sn-s(n-1)
=(n+1)(2n-1)-n(2n-3)
=4n-1

2.
cn=1/[a(2b+5)]
=1/[(4n-1)(4n+3)]
=(1/4)[1/(4n-1)-1/(4n+3)]
4cn=1/(4n-1)-1/(4n+3)
4Tn=[1/3-1/7]+[1/7-1/11]+[1/11-1/15]+……+[1/(4n-3)-1/(4n-1)]+[1/(4n-1)-1/(4n+3)]
=1/3-1/(4n+3)
Tn=1/12-1/(16n+12)

回答3:

an=4n-1