解:
(1)f(xy)=f(x)+f(y)令x=y=1,那么有f(1×1)=f(1)+f(1),即f(1)=2f(1),f(1)=0;
(2)首先考虑定义域有:x>0切2-x>0,即0
1、 f(1)=f(1)+f(1)=2f(1) 故f(1)=0
2、 x>0 (1)
2-x>0===>x<2 (2)
f(1/3)=1
2f(1/3)=2=f(1/3)+f(1/3)=f(1/9)
f(x)+f(2-x)=f(2x-x^)
f(2x-x^)
2x-x^>1/9
9x^-18x+1<0
[3-2倍根号2]/3
[3-2倍根号2]/3