∵x∈R,f(x)是定义在R上的奇函数,
∴f(0)=0,
得m=0
(1)因f(x)是定义在R上的奇函数,且f(x)=
.x+m
x2+nx+1
所以f(-1)=-f(1),
解得n=0,
∴m=n=0
(2)任取-1<x1<x2<1,f(x1)?f(x2)=
?x1
x12+1
x2
x22+1
=
=
x1(x22+1)?x2(x12+1) (x12+1)(x22+1)
=(x1x22?x2x12)+(x1?x2) (x12+1)(x22+1)
(x1?x2)+(1?x1x2) (x12+1)(x22+1)
∵-1<x1<1,-1<x2<1
∴-1<x1x2<1∴1-x1x2>0
又x1<x2,
∴x1-x2<0
∴f(x1)-f(x2)<0
∴f(x1)<f(x2)(8分)
∴f(x)在(-1,1)上单调递增
(3)∵∴f(x)在[-
,1 3
]上的最大值为f(1 3
)=1 3
,3 10
∴
≥a 3
,3 10
∴a≥
.9 10