什么是不确定性原理

是有关量子理论的
2025-05-23 11:41:08
推荐回答(4个)
回答1:

回答2:

不确定性原理,位置精度是指我们测量某一物体的位置,是在一定范围内得到的该物体的位置,而不是某个确定的位置,比如说在某个初始条件,受力也完全一样的的一些粒子,运动时间t后,我们测量,它们在x从0到10的范围内都可能出现,这就是它的精度。而在牛顿力学,我们要是测量的话,那么它们都只是在某一个点,比如说x=3这一点出现(因为它们受力和初始条件完全相同,就完全确定了以后的运动情况),因此这是量子力学与牛顿力学的本质区别。这就是量子力学的不确定性原理。动量精度也是这个道理,对于在t时刻时测量它们的动量,我们会发现,它们的动量也都不是一个同样的值。
高中里规定的那些精度,就是子弹可能出现的位置。是直观得到的。为了方便你的理解。
量子力学中并是用状态的函数(波函数)来描述粒子的运动情况的,在t1时刻,通过这个函数,我们能够得到它可能出现在哪个范围里,它的动量的可能范围是什么(也就是位置精度,和动量精度),通过量子力学的计算,可以得出:这两个范围的乘积满足一定条件,这也就是,在很多情况下,如果动量范围越大,那么它的位置范围就会越小。

回答3:

量子力学中,任意两个不对易得物理量不能同时被精确的测量

比如你要测量一个质子的位置和当前的运动速度,你就要去“看”它,就要用(至少)一个光子去照它,但你一照,也就改变了那个质子的本身状态

你可以用某种照射方法(比如用不同粒子,或不同强度的光)测得尽可能精确的质子位置,但不可避免会把它“打飞”,所以它原来的速度你就得不到了。你也可以另一种方法去测它的速度,但代价是改变了它的位置。
总之不可能速度位置都精确得到。

除了位置与速度,还有能量与时间也是一对,还有很多。

但注意!这并不是说,测量前速度和位置都是确定的量,只是自然法则不允许我们同时知道它们,不是的!而是它们根本就不确定!
其本质区别在于:经典物理的测量是去了解一个已经存在在那里的确定了的量。而量子力学中,测量前并不存在一个确定的状态,测量实际上是“参与其中”,不同的测量方法会导致原先的“不确定状态”变成某几个可能的“确定状态”之一,然后让你观察到。这是量子世界的办事法则

回答4:

不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。