设a>b>0 求a^2+1⼀(ab)+1⼀[a(a-b)]的最小值

求教好心人
2025-05-12 09:40:52
推荐回答(2个)
回答1:

∵1/(ab)+1/[a(a-b)]=1/(ab)+1/(a^2-ab)=a^2/[ab(a^2-ab)]≥a^2*[2/(ab+a^2-ab)]^2=4/a^2
当且仅当a=2b时,等号成立
∴a^2+1/(ab)+1/[a(a-b)]≥a^2+4/a^2≥4
当且仅当a=√2时,等号成立
∴a^2+1/(ab)+1/[a(a-b)]的最小值为4。

回答2:

a^2+1/(ab)+1/[a(a-b)]
=a^2+1/(ab)+1/[a(a-b)]+[a-b]+b-a
>=5倍5次根号下[a^2*1/(ab)*1/[a(a-b)]*[a-b]*b]-a
=5-a
最小值5-a