在△ABC中,角C>角B,AD⊥BC与点D,AE平分角BAC。求证:角EAD=1/2(角C-角B)证明:∠EAD=∠EAC-∠CAD =∠EAC-(90°-∠C) =∠EAC+∠C-90°① ∠EAD=90°-∠AED =90°-(∠B+∠BAE) =90°-∠B-∠BAE ② ①+②得 2∠EAD=∠EAC+∠C-90°+90°-∠B-∠BAE =∠C-∠B 故∠EAD=1/2(∠C-∠B)