在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写

2025-05-16 12:14:49
推荐回答(1个)
回答1:

证明:设6张卡片正面写的数是a 1 、a 2 、a 3 、a 4 、a 5 、a 6 ,反面写的数对应为b 1 、b 2 、b 3 、b 4 、b 5 、b 6 ,则这6张卡片正面写的数与反面写的数的绝对值分别为|a 1 -b 1 |,|a 2 -b 2 |,|a 3 -b 3 |,|a 4 -b 4 |,|a 5 -b 5 |,|a 6 -b 6 |.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.
于是|a 1 -b 1 |+|a 2 -b 2 |+|a 3 -b 3 |+|a 4 -b 4 |+|a 5 -b 5 |+|a 6 -b 6 |=0+1+2+3+4+5=15是个奇数.
另一方面,|a i -bi|与a i -b i (i=1,2,3,4,5,6)的奇偶性相同.所以|a 1 -b 1 |+|a 2 -b 2 |+|a 3 -b 3 |+|a 4 -b 4 |+|a 5 -b 5 |+|a 6 -b 6 |与(a 1 一b 1 )+(a 2 一b 2 )+(a 3 一b 3 )+(a 4 一b 4 )+(a 5 一b 5 )+(a 6 一b 6 )=(a 1 +a 2 +a 3 +a 4 +a 5 +a 6 )一(b 1 +b 2 +b 3 +b 4 +b 5 +b 6 )=(1+2+3+4+5+6)一(1+2+3+4+5+6)=O的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.
所以,|a 1 -b 1 |,|a 2 -b 2 |,|a 3 -b 3 |,|a 4 -b 4 |,|a 5 -b 5 |,|a 6 -b 6 |这6个数中至少有两个是相同的.