【题目有误,应该是求f'(0),不是求f'(x);】
(21)
f(x)
=[e^(x^2)-1 ]/x^2 ; x≠0
=1 ; x=0
lim(x->0) [e^(x^2)-1 ]/x^2
=lim(x->0) x^2/x^2
=1
=f(0)
x=0, f(x) 连续
f'(0)
=lim(h->0) { [e^(h^2)-1 ]/h^2 -f(0) }/h
=lim(h->0) { [e^(h^2)-1 ]/h^2 -1 }/h
=lim(h->0) { [e^(h^2)-1 -h^2 }/h^3
=lim(h->0) (1/2)h^4 /h^3
=0
x≠0
f'(x)
=d/dx { [e^(x^2)-1 ]/x^2 }
= [x^2 . ( 2x.e^(x^2) - 2x.(e^(x^2) -1) ]/x^4
= [ 2x^2.e^(x^2) - 2(e^(x^2) -1 ) ]/x^3
ie
f'(x)
= [ 2x^2.e^(x^2) - 2(e^(x^2) -1 ) ]/x^3 ; x≠0
=0 ; x=0
(18)
x=a(sint-tcost)
dx/dt =a(cost-cost + tsint) = atsint
y=a(cost +tsint)
dy/dt =a(-sint +sint + tcost) = atcost
dx/dy
= (dx/dt)/(dy/dt)
=tant
dy/dy|t=3π/4 = -1
d/dt ( dx/dy)
=(sect)^2
d^2x/dy^2
=[d/dt ( dx/dy)]/ (dy/dt)
=(sect)^2 / (atcost)
=1/[at(cost)^3 ]
d^2x/dy^2 |t=3π/4
= 1/[ a(3π/4) (-1/√2)^3 ]
=-8√2/(3aπ)