用换元法.
设y=x^2-1,那么,x^2=y+1,
f(y)=lg[(y+1)/(y-1)]
所以,f(x)=lg[(x+1)/(x-1)]
f[g(x)]=lg{[g(x)+1]/[g(x)-1]}=lgx
所以,[g(x)+1]/[g(x)-1]=x
1+2/[g(x)-1]=x
2/[g(x)-1]=x-1
g(x)-1=2/(x-1)
g(x)=1+2/(x-1) (到这一步也可以结果了)
g(x)=(x+1)/(x-1)
首先设x^2-1=y
则f(x^2-1)=lg[x^2/(x^2-2)]
=f(y)=lg[(y+1)/(y-1)]
把y变成x,则f(x)=lg[(x+1)/(x-1)]
所以f(g(x))=lg[(g(x)+1)/(g(x)-1)]=lgx
所以(g(x)+1)/(g(x)-1)=x
g(x)=(x+1)/(x-1)