lim(x→0)[e^x-e^(2x)]⼀x

2025-05-20 11:11:33
推荐回答(4个)
回答1:

lim(x→0)[e^x-e^(2x)]/x
洛必达法则求导得,
原式=lim(x→0)[e^x-2e^(2x)]
把x=0代入得
原式=1-2=-1

回答2:

由泰勒展开式
e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!+...
则e^2x=1+2x+(2x)^2/2!+(2x)^3/3!+...+(2x)^n/n!+...
分子=-x-3x^2/2!+……
所以原式=lim(x→0)(-1-3x/2!+……)=-1

回答3:

lim(x→0)[e^x-e^(2x)]/x =lim(x→0)[e^x-2e^(2x)]=-1

回答4:

-1