由sin(B+C)+3sin(A+C)cosC=0,得sin(B+C)+3sinBcosC=0,拆开得cosBsinC+4sinBcosC=0,得tanC=-4tanB。tanA=-tan(B+C)=(3tanB)/(1+4tan²B)=3/(1/tanB+4tanB)≤3/4,当tanB=1/2时等号成立