在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2,b=2,sinB+cosB=2,则角A的大小为(  )A.60°B

2025-05-13 18:42:09
推荐回答(1个)
回答1:

由sinB+sinB=

2
,两边平方可得1+2sinBcosB=2
∴2sinBcosB=1
即sin2B=1
因为0<B<π,
所以B=45°,又因为a=
2
,b=2,
所以在△ABC中,由正弦定理得:
2
sinA
2
sin45°

解得sinA=
1
2
,又a<b,所以A<B=45°,
所以A=30°
故选B