已知fx=2sin(2x+π⼀6)+a+1(a为常数)

2025-05-15 18:56:30
推荐回答(1个)
回答1:

1。由题意得。fx的递增区间取决于2sin(2x+π/6)的区间,且与sin函数的增减区间相同
所以2kπ-π/2<2x+π/6<2kπ+π/2,kπ-π/32kπ+π/2<2x+π/6<2kπ+3π/2,kπ+π/62。在x∈[0,π/2]时,(0,π/6)上递增,在(π/6.π/2)上递减,最大值在π/6点上
fx=2sin(2x+π/6)+a+1=2+a+1=4,所以a=1
fx=2sin(2x+π/6)+2
3.在2sin(2x+π/6)最大时,f(x)最大,
所以有 2x+π/6=2kπ+π/2
x=kπ+π/6