∫[0--->1] √[x/(1-x)] dx这是一个瑕积分,根据瑕积分的定义=lim [ε--->0+] ∫[0--->1-ε] √[x/(1-x)] dx令x/(1-x)=t²,则x=t²/(1+t²),dx=2t/(1+t²)²dt,t:0---->√(1/ε-1)=lim [ε--->0+] ∫[0---->√(1/ε-1)] t*2t/(1+t²)²dt=lim [ε--->0+] ∫[0---->√(1/ε-1)] 2t²/(1+t²)²dt