设x=sint,t范围是[π/6,π/2]原式=∫(π/6,π/2)csctdt=lnltan(t/2)l(π/6,π/2)=ln1-lntan(π/12)=lncot(π/12)=ln(2-√3)
令x=sint,则dx=costdt原式=∫(π/6,π/2) costdt/sintcost=∫(π/6,π/2) csctdt=ln|csct-cott||(π/6,π/2)=ln|1-0|-ln|2-√3|=-ln(2-√3)=ln(2+√3)