设EF=x,BF=y,
∵FE+EO=8,
∴OE=8-x,
而AB=16,O为边AB的中点,
∴OF=8-y,
∵EF⊥AB,
∴∠OFE=90°,
∴OE2=OF2+EF2,即(8-x)2=(8-y)2+x2,
∴16x=16y-y2,
又∵∠ABC=∠BAD=90°,即AD∥EF∥BC,
∴△BEF∽△BDA,△AEF∽△ACB,
∴
=EF AD
,BF BA
=EF BC
AF AB
∴
=AD x
①,16 y
=BC x
②,16 16?y
①+②得,
=16?AD+BC x
,16 y(16?y)
∴AD+BC=16x?
=16.16 16y?y2