解(I)由题设,S3=a1+(a1+d)q+(a1+2d)q2,将q=1,a1=1,S3=15,
代入解得d=4,
所以an=4n-3(n∈N*).
(II)当a1=d,S2=d+2dq,S3=d+2dq+3dq2,
S1,S2,S3成等比数列,
∴S22=S1S2,
即(d+2dq)2=d(d+2dq+3dq2),注意到d≠0,
整理得q=-2.
(III)证明:由题设可得S2n=a1+a2q+a3q2++a2nq2n-1,①
T2n=a1-a2q+a3q2-a4q3+-a2nq2n-1,②
①式减②式,得S2n-T2n=2(a2q+a4q3+-a2nq2n-1)
①式加上②式,得S2n+T2n=2(a1+a3q2++a2n-1q2n-2)
②式两边同乘q,得q(S2n+T2n)=2(a1q+a3q3++a2n-1q2n-1)
所以,(1-q)S2n-(1+q)T2n=(S2n-T2n)-q(S2n+T2n)
=2d(q+q3++q2n-1)
=
,n∈N*2dq(1-q2n) 1-q2