(1)∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中
,
AD=AB ∠DAC=∠BAE AC=AE
∴△ADC≌△ABE(SAS),
∴DC=BE;
(2)连接AG.
∵△ADC≌△ABE,
∴∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
DC,BF=1 2
BE,1 2
∴DG=BF.
在△ADG和△ABF中
,
AD=AB ∠ADC=∠ABE DG=BF
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=80°,
∴∠GAF=80°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=50°.
答:∠AFG=50°;
(3)∵∠DAB=a,
∴∠GAF=a.
∵∠GAF+∠AFG+∠AGF=180°,
∴a+2∠AFG=180°,
∴∠AFG=90°-
a..1 2
故答案为:90°-
a.1 2