数列{an}首项a1=1,前n项和Sn满足等式2tSn-(2t+1)Sn-1=2t(常数t>0,n=2,3,4…)(1)求证:{an}为

2025-05-19 06:32:27
推荐回答(1个)
回答1:

(1)证明:由2tSn-(2t+1)Sn-1=2t,得2tSn+1-(2t+1)Sn=2t,
两式相减得2t(Sn+1-Sn)-(2t+1)(Sn-Sn-1)=0,
故n≥2时,2tan+1-(2t+1)an=0,
从而

an+1
an
=1+
1
2t

又2tS2-(2t+1)S1=2t,即2t(a1+a2)-(2t+1)=2t,而a1=1.
从而a2
2t+1
2t
,故
a2
a1
=1+
1
2t

∴对任意n∈N*
an+1
an
=1+
1
2t
为常数,即{an}为等比数列;
(2)解:f(t)=1+
1
2t
bn=1+
1
2?
1
bn?1+2
?2=
1
2
bn?1

又b1=1.故{bn}为等比数列,通项公式为bn=(
1
2
)n?1

(3)解:Cn=n?(
1
2
)n?1

Tn=1+2?
1
2
+3?(
1
2
)2+…+n?(
1
2
)n?1

两边同乘以
1
2
,得
1
2
Tn
1
2
+2?(
1
2
)2+3?(
1
2
)3+…+n?(
1
2
)n

两式相减得
1
2
Tn=1+
1
2
+(
1
2
)