(1)证明:由2tSn-(2t+1)Sn-1=2t,得2tSn+1-(2t+1)Sn=2t,
两式相减得2t(Sn+1-Sn)-(2t+1)(Sn-Sn-1)=0,
故n≥2时,2tan+1-(2t+1)an=0,
从而
=1+an+1 an
,1 2t
又2tS2-(2t+1)S1=2t,即2t(a1+a2)-(2t+1)=2t,而a1=1.
从而a2=
,故2t+1 2t
=1+a2 a1
,1 2t
∴对任意n∈N*,
=1+an+1 an
为常数,即{an}为等比数列;1 2t
(2)解:f(t)=1+
,bn=1+1 2t
?2=1 2?
1
bn?1+2
bn?1,1 2
又b1=1.故{bn}为等比数列,通项公式为bn=(
)n?1;1 2
(3)解:Cn=n?(
)n?1,1 2
Tn=1+2?
+3?(1 2
)2+…+n?(1 2
)n?1,1 2
两边同乘以
,得1 2
Tn=1 2
+2?(1 2
)2+3?(1 2
)3+…+n?(1 2
)n,1 2
两式相减得
Tn=1+1 2
+(1 2
)
1 2