解答:(本题满分15分)
解:(1)令n>1,
+an?1?2Sn?1=0,
a
所以(an-an-1)(an+an-1)+an-an-1-2an=0,
(an+an-1)(an-an-1-1)=0,
an-an-1=1,
令n=1
则
+a1?2a1=0?a1=1.
a
从而,an=1+(n-1)=n.
(2)因为
=bn bn?1
,所以bn=(1 2
)n?1,1 2
因此cn=n(
)n?1.1 2
所以Tn=1(
)0+2(1 2
)1+…+n(1 2
)n?1,1 2
Tn=1(1 2
)1+2(1 2
)2+…+n(1 2
)n,1 2
Tn=1+1 2
+…+(1 2
)n?1?n(1 2
)n,Tn=4[1?(1 2
)n]?n(1 2
)n?11 2
=4?4(
)n?n(1 2
)n?11 2
=4?(2n+4)(
)n.1 2
从而可得:Tn<4.
因为Tn+1?Tn=4?(2n+6)(
)n+1?4+(2n+4)(1 2
)n=(1 2
)n(n+1)>0.1 2
所以Tn≥T1=1.
故存在整数M=4,m=0满足题目要求.