(1)∵正三角形ABC的边长为l,
∴AB=BC=AC=1,
∵BM=x,CN=y,AP=z,
∴MC=1-x,NA=1-y,PB=1-z,
∴S△MNP=S△ABC-S△PBM-S△MCN-S△NAP=
-
3
4
x(1-z)1 2
-
3
2
(1-x)y1 2
-
3
2
(1-y)z1 2
=
3
2
-
3
4
[x+y+z-(xy+yz+zx)]=
3
4
(xy+yz+zx);
3
4
(2)∵x+y+z=1,
∴(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1,
∵x2+y2+z2≥xy+yz+zx,
∴xy+yz+zx≤
(当x=y=z=1 3
时,等号成立),1 3
∴S△MNP=
(xy+yz+zx)≤
3
4
.
3
12