∵∠EBC、∠BCF是△ABC的外角,
∴∠EBC=∠A+∠ACB,∠BCF=∠A+∠ABC,
∴∠EBC+∠BCF=∠A+∠ACB+∠A+∠ABC=∠A+(∠A+∠ACB+∠ABC)
=40°+180°=220°,
∵∠B,∠C的外角平分线交于点D,
∴∠DBC+∠DCB=
(∠EBC+∠BCF)1 2
=
×220°=110°,1 2
∵△BCD中,∠DBC+∠DCB=110°,
∴∠D=180°-110°=70°;
∠D=90°-
∠A.1 2
证明:∵∠EBC、∠BCF是△ABC的外角,
∴∠EBC=∠A+∠ACB,∠BCF=∠A+∠ABC,
∴∠EBC+∠BCF=∠A+∠ACB+∠A+∠ABC=∠A+(∠A+∠ACB+∠ABC)
=∠A+180°,
∵∠B,∠C的外角平分线交于点D,
∴∠DBC+∠DCB=
(∠EBC+∠BCF)1 2
=
×(∠A+180°)=1 2
∠A+90°,1 2
∵△BCP中,∠PBC+∠PCB=
∠A+90°,1 2
∴∠P=180°-(
∠A+90°)=90°-1 2
∠A.1 2