设A(x1,y1),B(x2,y2),中点P(x0,y0),
(1)k0A=
,kOB=y1 x1
,y2 x2
∵OA⊥OB,
∴x1x2+y1y2=0,
∵y12=2px1,y22=2px2,
∴
?
y1 2
2p
+y1y2=0
y2 2
2p
∴y1y2=-4p2,x1x2=4p2,
(2)设OA:y=kx,代入y2=2px得x=0,x=
,2p k2
∴A(
,2p k2
),同理以-2p k
代k得B(2pk2,-2pk)1 k
∴
,消去k求得
x0=p(k2+
)1 k2
y0=p(
?k )1 k
=(x0 p
)2+2,即y02=px0-2p2,即中点P轨迹方程为y2=px-2p2.y0 p
(3)S△AOB=S△AOM+S△BOM=
|OM|(|y1|+|y2|)=p(|y1|+|y2|)≥2p1 2