如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.(Ⅰ)证明:EF∥平面PC

2025-05-15 06:28:49
推荐回答(1个)
回答1:

解答:(Ⅰ)证明:如图,连接BD,则E是BD的中点.
又F是PB的中点,
所以EF∥PD.
因为EF不在平面PCD内,
所以EF∥平面PCD.(6分)
(Ⅱ)解:连接PE.
因为ABCD是正方形,
所以BD⊥AC.
又PA⊥平面ABC,
所以PA⊥BD.
因此BD⊥平面PAC.
故∠EPD是PD与平面PAC所成的角.
因为EF∥PD,
所以EF与平面PAC所成的角的大小等于∠EPD.
因为PA=AB=AD,∠PAD=∠BAD=90°,
所以Rt△PAD≌Rt△BAD.
因此PD=BD.
在Rt△PED中,
sin∠EPD=

ED
PD
1
2

∠EPD=30°.
所以EF与平面PAC所成角的大小是30°.(14分)