已知数列an的前n项和sn=(n^2+n)⼀2 设bn=2^an+(-1)^n×an 求 数列

n的前n项和
2025-05-21 21:39:43
推荐回答(1个)
回答1:

Sn = (n^2+n)/2
n=1, a1=1
for n>=2
an = Sn -S(n-1)
=(1/2)( 2n-1 +1)
=n
bn =2^(an) + (-1)^n .an
=2^n + (-1)^n .n
Tn = b1+b2+...+bn
if n is odd
Tn = 2(2^n -1) - n + (n-1)/2
=2(2^n -1) - (n+1)/2
if n is even
Tn =2(2^n -1) + n/2