Sn=2^n -1, S(n-1)=2^(n-1) -1, an=Sn-S(n-1) =2^n -1-[2^(n-1) -1] =2^n-2^(n-1) =2^(n-1) an^2=2^(2n-2)=4^n/4, a(n+1)^2=4^(n+1)/4, a(n+1)^2/an^2=4 an^2是以a1^2=1为首项,4为公比的等比数列; S=(1-4^n)/(1-4)=(4^n-1)/3=4^n/3-1/3