求曲线x=t-sint,y=1-cost,z=4sint⼀2在点(pi⼀2-1,1,2根号2)处的

2025-05-19 19:43:47
推荐回答(2个)
回答1:

曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2),对应参数值 t = π/2
切向量 T = ( x'(t),y'(t),z'(t) ) | t=π/2
= ( 1-cost,sint,2 cos(t/2) ) | t=π/2
= (1,1,√2 )
切线方程 x - (π/2-1) = y - 1 = (z - 2√2) / √2
法平面方程 x - (π/2-1) + y - 1 +√2 (z - 2√2) = 0
即 x + y + √2 z - π/2 - 4 = 0。

希望对你有所帮助 还望采纳~~

回答2:

求曲线x=t-sint,y=1-cost,z=4sint/2在点(pi/2-1,1,2根号2)处的切线与法平面方程。 这题怎么做?参数t怎么求?

曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2),对应参数值 t = π/2
切向量 T = ( x'(t),y'(t),z'(t) ) | t=π/2
= ( 1-cost,sint,2 cos(t/2) ) | t=π/2
= (1,1,√2 )
切线方程 x - (π/2-1) = y - 1 = (z - 2√2) / √2
法平面方程 x - (π/2-1) + y - 1 +√2 (z - 2√2) = 0
即 x + y + √2 z - π/2 - 4 = 0。