设 x1 x2 在 (0,1)上 且 x1
=x2+1/x2-x1-1/x1
=(x2-x1)+(1/x2-1/x1)
=(x2-x1)+(x1-x2)/(x1x2)
=(x2-x1)[1-1/(x1x2)]
因为 x1 x2 在 (0,1)所以 x1x2<1
所以 1-1/(x1x2)>0
又因为 x1
即 f(x1)>f(x2)
所以 函数f(x)=x+1/x在(0,1)上是减函数
f(x)=(x+1)/x, 设x1,x2 属于(0,1)且x1
所以f(x)=x+1/x在(0,1)上是减函数
f(x)=x+1/x=1+1/x 在(0,1)上1/x 是双曲线的一部分,X由0到1逐渐增大,1/x的值从正无穷逐渐接近于1,也就是减函数,则1+1/x相当于把1/x沿Y轴上移1,其值在(0,1)从正无穷减到接近于2,所以是减函数。
设x1>x2,并且属于(0,1),f(x1)-f(x2)=x1+1/x1-x2-1/x2=x1^2x2/x1x2+x2/x1x2-x1x2^2-x1/x1x2=x1^2x2+x2-x1x2^2-x1/x1x2=x1x2(x1-x2)+(x2-x1)/x1x2=(x1x2-1)(x2-x1)/x1x2,由于定义域为(0,1),所以x1x2>0,(x2-x1)>0,(x1x2-1)小于0(这里因为x1x2都小于1,所以乘积肯定小于1再减1小于0)所以整个式子都小于0,那么f(x1)-f(x2)小于0,所以函数f(x)=x+1/x在(0,1)上是减函数。