(1)解:∵a3=
,an+1=8 9
,∴a3=2an
an+1
,∴a2=2a2
a2+1
4 5
∵a2=
,∴a1=2a1
a1+1
;2 3
(2)证明:∵an+1=
,∴2an
an+1
=1 an+1
+1 2an
1 2
∴
?1=1 an+1
(1 2
?1)1 an
∵a1=
,∴2 3
?1=1 a1
1 2
∴数列{
?1}是以1 an
为首项,1 2
为公比的等比数列;1 2
(3)解:由(2)知,
?1=(1 an
)n1 2
∴
=(1 an