∵数列{an}是一个公差不为0等差数列,且a2=2,并且a3,a6,a12成等比数列,
∴a62=a3?a12,
∴(2+4d)2=(2+d)(2+10d),
∵d≠0,∴d=1.
∴an=2+(n-2)=n,
∴
=1
anan+1
-1 n
,1 n+1
∴
+1
a1a2
+1
a2a3
+…+1
a3a4
=1-1
anan+1
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
=1 n+1
,n n+1
故答案为:
.n n+1